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Abstract 

A fine-grained record integration and linkage tool 

(FRIL) is presented. The tool extends traditional 

record linkage tools with a richer set of parameters. 

Users may systematically and iteratively explore the 

optimal combination of parameter values to enhance 

linking performance and accuracy. Results of linking 

a birth defects monitoring program and birth 

certificate data using FRIL show 99% precision and 

95% recall rates when compared to results obtained 

through handcrafted algorithms, and the process took 

significantly less time to complete. Experience and 

experimental result suggest that FRIL has the 

potential to increase the accuracy of data linkage 

across all studies involving record linkage. In 

particular, FRIL will enable researchers to assess 

objectively the quality of linked data. 

Introduction 

The goal of record linkage is to find syntactically 

distinct data entries that refer to the same entity in 

two or more input files.  The process is important for 

both data cleaning and integration in birth defects 

surveillance and research. Traditional interactive 

tools for record linkage provide users with a small 

number of parameters, consisting mostly of user-

options for selecting similarity measures and decision 

models. In some cases, the user may also pick the 

search algorithm. The combination of choices 

typically does not provide sufficient granularities to 

produce results that are easily discernible. Hence for 

most research involving record linkage, the accuracy 

of the linked data is not well-understood, and often 

not discussed in the evaluation of the study.  

As part of a surveillance program to monitor birth 

defects in the metropolitan Atlanta area, we have 

developed a fine-grained record integration and 

linkage tool (FRIL) to link a 12,700 record database 

from the Metropolitan Atlanta Congenital Defects 

Program (MACDP) with a 1.25 million record birth 

certificate database. The objectives of MACDP are to 

monitor births of infants with malformations for 

changes in incidence over time or patterns suggestive 

of environmental influences, to maintain a case 

registry for epidemiologic studies, to quantify the 

morbidity and mortality associated with birth defects, 

and to provide data for education and health policy 

decisions related to prevention
1
. Towards these 

objectives, MACDP conducts data linkages to 

enhance the completeness of birth defects 

surveillance data. 

Background 

The problem of record linkage is defined as follows. 

Given sets A and B of records, find a partition of 

A×B consisting of sets M (matched), U (unmatched), 

and P (possibly matched) that satisfy M = {(a, b) | a = 

b} and U = {(a, b) | a ≠ b}.  A widely adopted record 

linkage approach is the probabilistic approach by 

Fellegi et. al.
2
 First, a vector of similarity scores (or 

agreement values) is computed for each pair. Then, 

the pair is classified as either a match or non-match 

(or possibly matched) based on an aggregate of the 

similarity scores. Among methods used for 

classification we find rule-based methods that allow 

human experts to specify matching rules, 

unsupervised learning methods such as Expectation-

Maximization (EM) that learns the weights or 

thresholds without relying on labeled data, and 

supervised learning methods that use labeled data to 

train a model, such as decision tree, naϊve Bayesian or 

SVM. For detailed descriptions of those methods we 

refer readers to
3,4,5

. For computing similarities, 

various distance functions are used and studied. 

Complete descriptions of these methods can be found 

in
3,6,7

, and several comparative evaluations of those 

methods have been performed
8,9

. 

FRIL adopts the probabilistic linkage approach.  Its 

strength is the amount of control that the user has for 

tuning the accuracy and performance of linkages.  In 

the remainder of the paper, we describe the full 

spectrum of user-tunable parameters available in 

FRIL and discuss their importance in the context of 

birth defect surveillance (BDS). 

Methods 

Among the user-controlled parameters in FRIL are 

certain algorithmic decision points that are usually 



  

hidden in common linkage tools such as Link King
10

, 

Link Plus
11

 or LinkageWiz
12

.  FRIL embodies the 

standard process of record linkage tools as described 

in, for example, TAILOR
13

. From the data sources, 

the user chooses a search method, a set of distance 

functions for measuring record similarity, and a 

decision model for accepting or rejecting a match. 

Iterative refinement of linkage is possible: unmatched 

records from one run of FRIL are available as input to 

a follow-up run using a different set of parameters. 

Graphical tools for reconciling schema discrepancy 

and for analyzing, validating and summarizing results 

have been incorporated. In addition, computerized 

learning tools are being developed to enable 

automatic parameters suggestion. 

The workflow of FRIL is shown in Figure 1. The user 

specifies the initial input files.  Each run involves the 

user specifying the search method, the distance 

function in the attribute comparison module and the 

decision model. Output consists of sets M, U, P and 

various summary statistics. Sets U and P may be fed 

back into FRIL using a different set of parameters. 

Figure 1: The FRIL architecture 

Search methods. Search methods refer to algorithms 

for determining which pairs of records to compare 

between the data sources A and B and the attributes 

on which comparisons are made. FRIL implements 

two search methods: nested loop join (NLJ) and the 

sorted neighborhood method (SNM). NLJ performs 

an all to all comparison between A and B and is useful 

for small input data files.  

The sorted neighborhood method (SNM) first sorts 

records of A and B over the relevant attributes, and 

follows by comparing only records within fixed 

windows ωA and ωB of records as these windows are 

advanced along the data files. Sorting moves records 

that have similar values (relative to the selected 

attributes) close together, presumably to within ωA 

and ωB of each other. This avoids the need to 

compare each record of one file against the entire data 

set of the second file. We call user inputs to ωA and 

ωB window sizing (WS).  

An initial issue that the user must address when 

selecting attributes for comparison is to resolve 

possible discrepancies between schemas of A and B. 

Attributes are often labeled differently in the BDS 

study (e.g., ”Baby Name” vs. ”B Name”), and in 

some cases two attributes of one source map onto a 

single attribute of the other. FRIL allows users to 

identify attributes from one source to the other. Based 

on the user-specified mapping, FRIL will merge and 

split attributes or normalize attribute values on-the-fly 

if necessary. Attribute splitting is by separating data 

values based on regular expressions.  We call this 

user input attribute selection and mapping (ASM). 

The resulting set of attributes to be used in the linking 

is denoted Φ.  

When Φ contains more than a single attribute and 

searching is based on SNM, the choice of the 

dominant sorting attribute plays a critical role. In 

BDS, while the baby name attribute carries the 

greatest weight, using mother name as the dominant 

sorting attribute allows finding additional matches. 

The reason is that data discrepancy occurs more 

frequently on baby names, and, if used as the 

dominant sorting attributes, similar records may end 

up outside the tested window. We call the user input 

of the dominant sort attribute sort ordering (SO). 

Distance function. The different string distance 

functions commonly used in record linkage are well 

understood
3
. In FRIL we have implemented edit 

distance, Soundex, Q-gram, and equality. All the 

functions have the same type: a×a→[0,1], where a is 

an attribute in Φ. The smaller the function value, the 

closer to an exact match are the two inputs. FRIL 

allows users to choose a different distance function 

for each attribute in Φ. We refer to this input as a 

distance functions selection (DFS). 

For each distance function f, the user is allowed to 

indicate the threshold for acceptance and rejection via 

a simple form of fuzzy logic. Specifically, if fa is 

chosen as the distance function for attribute a, FRIL 

allows the user to specify the maximum 

max fa ∈ [0,1]and the minimum min fa ∈ [0,1] values 

for outright rejection and acceptance, respectively. 

Choosing 0 for minfa implies that strict equality is 

required for acceptance. For values in between maxfa 

and minfa, we use the membership function mfa: 

 
We call this set of user inputs attribute scoring (AS). 

If minfa = 0 and maxfa = 1, then the above function is 

the same as a continuous similarity function used in 

typical probabilistic linkage methods. 

Decision model 

Aside from selecting and mapping attributes (ASM), 

FRIL also allows a weight ]1,0[∈aα to be assigned to 

each attribute a in Φ. A higher weight reflects greater 



  

importance. In BDS, matching baby name is more 

important than matching mother name or address. We 

refer to this user input attribute weighting (AW). 

The final matching score for a pair of records r1 and 

r2 is the normalized weighted sum over all attributes: 

∑

∑

Φ∈

Φ∈
=

a

a

a

aafaa rrm

rrscore
α

ππα ))(),((

),(
21

21

 

Here π is the standard projection operator of the 

relational algebra. Again, the user may specify two 

weights, mint and maxt to indicate the overall scores 

for match rejection and acceptance. Linked records 

with scores above maxt are considered matching, 

below mint are unmatching, and in between are 

probable matches. A goodness of fit score is reported 

based on the following membership function: 

 
We refer to this user input the record scoring (RS). 

As an example, let Φ = {a}, fa be the edit distance, 

minfa=0.5 and maxfa=1, αa=1, mint=0 and maxt=1. The 

following shows the scores and match results for three 

input record pairs (edit distance returns # edits as a 

fraction of the length of the longer string). 
r1 R2 #edits fa M 

“AARON” “ARON” 1 0.2 1.0 

“AARON” “ADAM” 4 0.8 0.4 

“AARON” “HUGH” 5 1 0.0 

Observe that boolean join (or exact match) condition 

is a special case of the above discussion and may be 

obtained by choosing equality as the distance 

function, choosing minfa= maxfa=0, and mint=maxt=1. 

As finding correct weights and record scoring can be 

challenging, we are working to add unsupervised 

learning methods, such as EM, for suggesting good 

values. Table 1 includes a summary of the full space 

of parameters in FRIL. 

Results and Discussion 

An objective of our experimental evaluation is to 

present a process for obtaining the best possible 

linkage between two input data sources. The MACDP 

program is an active population-based surveillance 

system for birth defects that was established in 1967 

by the CDC, Emory University, and the Georgia 

Mental Health Institute. The program has collected 

information on more than 12,700 cases of birth 

defects among the offspring of residents of the 5 

central counties of Atlanta for years 1997-2006. As 

part of the surveillance program, a birth certificate 

database of 1.25 million records of children born in 

the state of Georgia for the same years was obtained 

from the Georgia Department of Human Resources. 

The goal of linking the two data sets is to match each 

record from the MACDP database with a 

corresponding record in the birth certificates 

database. However, the two sources contain numerous 

metadata (i.e., schema level) and object-data 

heterogeneities. For example, the birth certificates 

database provides separate attributes for first and last 

name, and the same information is found under a 

single attribute in the MACDP database. The number 

of digits used for encoding year of birth also varies 

between the two sources. Metadata heterogeneities 

are resolved in FRIL through user specified attribute 

selection and mapping (ASM). 

Parameter Description Possible values 

WS SNM window 

size selection 

two integer numbers greater than 0 

ASM attribute 

selection and 

mapping 

any subset combination of the data 

source attributes, including possible 

merging and splitting of attributes 

AW attribute 

weighting 

real numbers between 0 and 1 

SO sort ordering all permutations of the attributes 

DFS distance 

function 

selection 

for each pair of attributes distance 

function from a set of available 

functions 

AS attribute 

scoring 

two real numbers in the range [0,1] 

with respect to the distance 

function; 0 indicates identical 

values 
RS record 

scoring 

two real numbers in the range [0,1] 

indicating acceptance and rejection 

thresholds of records with respect to 

the attribute scoring 

Table 1: The FRIL Parameter Space 

Object-data heterogeneity examples include mis-

recording of information and missing data values. 

These are more difficult to handle and require the full 

range of FRIL features to resolve. The remainder of 

this section focuses on this type of heterogeneity. 

Metrics. The two data sets in the BDS had been 

linked previously using a deterministic, rule-based 

approach. The results were obtained over 2-3 weeks 

through a combination of running the linkage 

program, adapted from a SAS program developed by 

the National Center for Health Statistics, and manual 

inspections.  We use the fruit of this labor as the gold 

standard, G, against which our methods are 

compared. We evaluate using two standard metrics: 

precision and recall. 

precision =
# of true positives

# of true positives+# of false positives

 

A true positive is a pair of correctly matched records, 

and a false positive is one that is incorrectly matched.  

recall =
# of true positives

# of true positives+# of false negatives

 

For measuring improvements across experiments, 

precision and recall are better than sensitivity and 

specificity.  Given the size of the data sets, the last 



  

measure in particular is overshadowed by the large 

number of true negatives. 

Data Characteristic. Among the 187 MACDP data 

attributes available for linking, Table 2 provides 

statistics about the data in some of the more 

intuitively important attributes in our data sources.  In 

general, columns that have high number of null values 

are not good candidates to include in the join 

condition. Sources of null values vary, and may 

indicate (1) unknown, (2) non-applicable or (3) 

unrecorded parameters. Hence comparing attributes 

with nulls provide less information than comparing 

attribute with non-nulls.  Initial choices of attributes 

are highlighted in bold italic font in the table. 

Percentage of not-null values Column name 
MACDP data Birth cert. data 

Birth date (baby) 100% 100% 

Name (baby) 100% 100% 

Birth date (mother) 100% 100% 

Name (mother) 100% 100% 

Birth date (father) 82% 83% 

Name (father) 82% 83% 

Hospital # 100% 99.5% 

City 100% 97.5% 

Zip code 100% 99.8% 

Sex (child) 100% 100% 

Table 2: Characteristics of columns in datasets 

There are other attributes in the data sources not used 

in our experiments.  The reason to work with a small 

subset of attributes is that it allows us to evaluate the 

ease of use and the utility of various features of FRIL 

without getting too involved in the details of the data. 

Linkage experiments. With the attributes for the 

linking process fixed, we now describe experiments 

aimed at finding parameters of the join condition that 

produces the best linkage result. We focus on the 

SNM search method for its superior efficiency 

compared to NLJ. The six remaining parameters that 

must be decided are DFS, AS, AW, SO, RS, and WS. 

Experiment 1. Our initial values for the DFS, AS and 

AW parameters are shown in Table 3. The top-down 

ordering of the attributes in the table corresponds to 

the parameter SO. Initial values for record scoring are 

mint=maxt=0.61. In all experiments, we used 

ωA=ωB=8. For attributes with likely misspellings, the 

edit distance function is deployed with acceptance 

and rejection thresholds specified (as fraction of the 

length of the longer string) in the table. Results 

produced by the join condition as specified were quite 

good: precision at 95% and recall at 86%. 

Experiment 2. We reviewed the false positives 

generated above and observed that non-matching date 

of birth was an important cause. We refined the join 

condition by increasing the weight assigned to the 

date of birth attribute to 0.35 and reduced the weight 

of the baby name attribute to 0.3.  This resulted in a 

98% precision and a slightly decreased recall of 85%. 

Column name Metric Weight 

Name (baby) Edit dist. (minfa=0.2, maxfa=0.25) 0.4 

Birth date (baby) Equality 0.25 

Name (mother) Edit dist. (minfa=0.2, maxfa=0.25) 0.2 

Zip code Equality 0.1 

Hospital # Equality 0.05 

Table 3: Initial join condition 

Experiment 3. An examination of the remaining false 

positives showed a strong correlation to non-matching 

baby name, and in particular to the overly relaxed 

acceptance threshold for the edit distance function for 

baby name. We restricted the threshold (minfa=0.15, 

maxfa=0.25), and it resulted in an improved precision 

value of 99% and no change in the recall. 

Experiment 4. To address the relatively low recall 

rate we sifted through records that appeared in the 

gold standard G but that were not matched in 

Experiment 3. For most of these records, we observed 

that no attempted links were even made by FRIL. The 

reason lies in the sort ordering we used (again, 

indicated by the top-down ordering of attributes in 

Table 3). Using baby name as the dominant sorting 

attribute, two records with dissimilar values have the 

potential to occur far apart, beyond the window size, 

in the sorted files. However, significant mismatches in 

baby name often occur as the result of data entry 

conventions, e.g. for babies that have not been given a 

first name, the letter B is used to denote "Baby" (e.g., 

"Smith B"). In some cases, similar records appeared 

more than 1,200 records apart in the sorted file when 

sorted on baby name (Figure 2a). It turns out that 

while mother name is a semantically less significant 

attribute (i.e., carries less weight), it is a better 

dominant sorting attribute for many cases due to 

fewer variations in how its values are recorded. 

Figure 2b illustrates how the problem of Figure 2a is 

solved through a different sort ordering.  

Rather than increasing the window sizes, which would 

hamper computational efficiency, we handled the 

problem with another feature of FRIL: the join 

summary. It allowed us to create an output of those 

MACDP records not joined in the initial run of the 

experiment (> 1500 records), and use them as input in 

a second-run of the experiment under a different set 

of parameters. By changing the dominant sorting 

attribute to mother name, the second run linked nearly 

900 of the unmatched records from the first run. Thus 

the combined effect of the two runs yielded 99% 

precision and 95% recall. With a small window size 

of 8, each run of FRIL took approximately 20 minutes 

for the two data sources. The overall time for 



  

completing the four experiments took less than two 

days. The remaining unmatched records have non-

matching names, date of births, etc. Those records 

were joined manually in G with the assistance of 

human expertise. We also found 4 linkages that did 

not appear in G. This suggests another important 

utility of FRIL: that it can be used as a verification 

tool for existing linkage results. Table 4 shows a 

summary of the four experiments.  

Figure 2: Impact of SO on compared records 

 Experi-

ment 1 

Experi-

ment 2 

Experi-

ment 3 

Combined 

result 

Precision 0.95 0.98 0.99 0.99 

Recall 0.86 0.85 0.85 0.95 

Table 4: Summary of results. Combined result 

contains linkages from two runs. 

Conclusion and Ongoing Development 

FRIL facilitates efficient and accurate record linkage 

over large data sources. The great flexibility of FRIL 

comes from the large number of fine-grained 

parameters that the user may tune, and it allowed us 

to link MACDP and birth certificates data efficiently 

and accurately (99% precision and 95% recall). By 

exploiting all the features of FRIL, we presented a 

process which enabled us to find good join condition.  

The benefits of FRIL extend beyond the results of 

linking. By revealing key algorithmic decision points 

for user inputs, the tool forces researchers to consider 

computational issues that impact accuracy and 

performance of the linkage process. As a result, 

researchers are able to judge the quality of the linked 

data scientifically and quantitatively. For already 

linked data, FRIL may also serve as a validation tool.  

Work on extending FRIL with several automated 

tools is ongoing. They include machine learning 

techniques to suggest values of certain parameters 

(e.g., attribute selection and weight). Borrowing 

query optimization techniques from databases, 

window size and sort ordering may also be suggested. 

We are optimistic that FRIL will facilitate many 

future projects based on birth defects surveillance 

data and other public health surveillance projects. 
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